Deep Sketch Hashing: Fast Free-hand Sketch-Based Image Retrieval CVPR '17

Paper presentation 2018. 11. 01. Taeun Hwang (황태운)

CS688: Web-Scale image Retrieval

Review

• SuBiC: A supervised, structured binary code for image search[ICCV 2017] presented by Huisu Yun

- Very long Raw feature vectors \rightarrow binary code
- Code length in the SuBiC : **KM**

actual storage can be easily reduce to M log₂K

One hot code block → M additions for distance computing

Contents

Introduction

Main Idea

Method

Experiment & result

Introduction

Introduction

Sketch-Based Image Retrieval

Image retrieval given freehand sketches

illustration of the SBIR

Challenges in SBIR

Geometric distortion between Sketch and Natural image

IE) backgrounds, various viewpoints...

COW

sketch

natural image

Searching efficiency of SBIR

- Most SBIR tech are based on applying NN
- Computational complexity O(Nd)
- Inappropriate for Large-scale SBIR

Main Idea

Geometric distortion

- diminish the geometric distortion using "sketchtokens"
- Speeds up SBIR by embedding sketches and natural images into two sets of compact binary codes
 - In Large-scale SBIR, heavy continuous-valued distance computation is decrease

DSH: Method

Deep Sketch Hashing(DSH):

Fast Free-hand Sketch-Based Image Retrieval

Sketch token: background

 Sketch tokens: A learned mid-level representation for contour and object detection [JJ Lim et al., CVPR'13]

Sketch-token : Hand-drawn contours in images

Sketch token: background

 Sketch-tokens have similar stroke patterns and appearance to free-hand sketches

Natural Image

Sketch Token

- Reflect only essential edges of natural images without detailed texture information
- In this work : used for diminish geometric distortion between sketch and real image

Network structure

• Inputs of DSH

Network structure

- Semi-heterogeneous Deep Architecture
- Discrete binary code learning

Semi-heterogeneous Deep Architecture

Network structure

C1-Net(CNN) for Natural image C2-Net(CNN) for sketch and sketch-token

Cross-weight Late-fusion Net

Cross-weight Late-fusion Net

Connect the last pooling and fc layer with **Cross-weight** [S Rastegar et al., CVPR'16]

Maximize the mutual inform across both modalities,

while the information from each individual net is also preserved KAIST

Cross-weight Late-fusion Net

Late-fuse C1-Net and C2-Net into a unified **binary coding layer hash_C1**

the learned codes can fully benefit from both natural images and their corresponding sketch-tokens

Shared-weight Sketch Net

Shared-weight Sketch Net

Siamese architecture

for C2-Net(Top) and C2-Net(Middle)

consider the **similar characteristics** and **implicit correlations** existing between sketch-tokens and free-hand sketches

Shared-weight Sketch Net

hash codes of free-hand sketches learned shared-weight net will decrease the geometric difference between images and sketches during SBIR.

• Result : Deep hash function **B**

A = weights of C2(Top) : Sketch B, C = weights of C2(Middle),C1 : Sketch-token, natural image

There are two loss function

- Cross-view Pairwise Loss
- Semantic Factorization Loss

Cross-view Pairwise Loss

 denotes the cross-view similarity between sketch and natural image

$$\min_{\mathbf{B}^{I},\mathbf{B}^{S}} \mathcal{J}_{1} := ||\mathbf{W} \odot m - \mathbf{B}^{I^{\top}} \mathbf{B}^{S}||^{2}$$

Cross-view Pairwise Loss

 The binary codes of natural images and sketches from the same category will be pulled as close as possible (pushed far away otherwise)

Semantic Factorization Loss

$$\min_{\mathbf{B}^{I},\mathbf{B}^{S}} \mathcal{J}_{2} := ||\phi(\mathbf{Y}^{I}) - \mathbf{D}\mathbf{B}^{I}||^{2} + ||\phi(\mathbf{Y}^{S}) - \mathbf{D}\mathbf{B}^{S}||^{2}$$

\$\phi(\cdot)\$: Word embedding modelY : label matrix

Semantic Factorization Loss

- Consider preserving the intra-set semantic relationships for both the image set and the sketch set
- Using Word2Vector, consider distance of label's semantic

Semantic Factorization Loss

$$\min_{\mathbf{B}^{I},\mathbf{B}^{S}} \mathcal{J}_{2} := ||\phi(\mathbf{Y}^{I}) - \mathbf{D}\mathbf{B}^{I}||^{2} + ||\phi(\mathbf{Y}^{S}) - \mathbf{D}\mathbf{B}^{S}||^{2}$$

\$\phi(\cdot)\$: Word embedding modelY : label matrix

Semantic Factorization Loss

• The semantic embedding of "cheetah" will be closer to "tiger" but further from "dolphin"

• Final Objective Function

 Cross-view Pairwise Loss + Semantic Factorization Loss

$$\min_{\mathbf{B}^{I},\mathbf{B}^{S},\mathbf{D}^{I},\mathbf{D}^{S},\Theta_{1},\Theta_{2}} \mathcal{J} := \|\mathbf{W} \odot m - \mathbf{B}^{I^{\top}}\mathbf{B}^{S}\|^{2}$$

$$+ \lambda(\|\phi(\mathbf{Y}^{I}) - \mathbf{D}\mathbf{B}^{I}\|^{2} + \|\phi(\mathbf{Y}^{S}) - \mathbf{D}\mathbf{B}^{S}\|^{2})$$

$$+ \gamma(\|\mathbf{F}_{1}(\mathcal{O}_{1};\Theta_{1},\Theta_{2}) - \mathbf{B}^{I}\|^{2} + \|\mathbf{F}_{2}(\mathcal{O}_{2};\Theta_{2}) - \mathbf{B}^{S}\|^{2})$$

Here, $\lambda > 0$ and $\gamma > 0$ are the balance parameters. The last two regularization terms aim to minimize the quantization loss between binary codes \mathbf{B}^{I} , \mathbf{B}^{S} and deep hash functions $\mathbf{F}_{1}(\mathcal{O}_{1}; \Theta_{1}, \Theta_{2})$, $\mathbf{F}_{2}(\mathcal{O}_{2}; \Theta_{2})$. Similar regularization terms are also used in [50, 36] for effective hash code learning. Next, we will elaborate on how to optimize problem (3).

Optimization (training)

- The objective function is non-convex and nonsmooth, which is in general an NP-hard problem due to the binary constraints
- Solution : sequentially update parameters
 - param : D, BI, BS and deep hash functions F1, F2

Test

Given sketch query

• Compare the distance with B^I's in retrieval database

Result

teddy

bee

cup

dog

lion

0.8 0.9 1

0.7

horse shoe

🛧 helicopter

bench

trumpet

Experiments

Data set

- TU-Berlin Extension, Sketchy
- All image has relatively complex backgrounds

Top-20 retrieval results (Red box : false positive)

Result

Comparison on other SBIR methods

Methods	Dimension	TU-Berlin Extension			
		MAD	Precision	Retrieval time	Memory load(MB)
		WIAI	@200	per query (s)	(204,489 gallery images)
HOG [8]	1296	0.091	0.120	1.43	2.02×10^3
GF-HOG [18]	3500	0.119	0.148	4.13	$5.46 imes 10^3$
SHELO [49]	1296	0.123	0.155	1.44	$2.02 imes 10^3$
LKS [50]	1350	0.157	0.204	1.51	$2.11 imes 10^3$
Siamese CNN [46]	64	0.322	0.447	7.70×10^{-2}	99.8
SaN [67]	512	0.154	0.225	0.53	$7.98 imes 10^2$
GN Triplet* [52]	1024	0.187	0.301	1.02	$1.60 imes 10^3$
3D shape* [61]	64	0.054	0.072	7.53×10^{-2}	99.8 MB
Siamese-AlexNet	4096	0.367	0.476	5.35	$6.39 imes 10^3$
Triplet-AlexNet	4096	0.448	0.552	5.35	$6.39 imes 10^3$
DSH (Proposed)	32 (bits)	0.358	0.486	5.57×10^{-4}	0.78
	64 (bits)	0.521	0.655	7.03×10^{-4}	1.56
	128 (bits)	0.570	0.694	1.05×10^{-3}	3.12

End

